Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
L. Vijayalakshmi, ${ }^{\text {a }}$ V.

Parthasarathi, ${ }^{\mathbf{a}}{ }^{*}$ Narasinh Dodia ${ }^{\text {b }}$ and Anamik Shah ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620024 , India, and
${ }^{\text {b }}$ Department of Chemistry, Saurashtra University, Rajkot 360 005, Gujarat, India

Correspondence e-mail: sarati@bdu.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.050$
$w R$ factor $=0.134$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

1,5,13-Trimethyl-9-phenyl-8,10-dioxatetracyclo[7.7.1.0 $0^{2,7} .0^{11,16}$]heptadeca-2,4,6,11,13,15-hexaene

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2}$, both six-membered heterocyclic rings adopt a distorted envelope conformation. The mean planes passing through these rings are nearly perpendicular to each other [dihedral angle $88.39(7)^{\circ}$].

Comment

The title compound, (I), was synthesized with a view to screening it for antimalarial activity. Before studying the activity, the X-ray structure determination was carried out. In (I), both the heterocyclic rings B and C adopt a distorted envelope conformation; the puckering parameters are: $Q=$ 0.526 (2) $\AA, \theta=124.7^{\circ}$ and $\varphi=309.47(1)^{\circ}$ for ring B and $Q=$ $0.505(2) \AA, \theta=130.5(2)^{\circ}$ and $\varphi=65.54(2)^{\circ}$ for ring C, respectively (Cremer \& Pople, 1975). Atom C17 deviates from the best plane passing through atoms $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7 / \mathrm{O} 8 / \mathrm{C} 9$ by 0.715 (2) \AA and similarly the deviation of C 17 from the best plane through $\mathrm{C} 9 / \mathrm{O} 10 / \mathrm{C} 11 / \mathrm{C} 16 / \mathrm{C} 1$ is -0.688 (2) \AA. The mean planes through the two heterocyclic rings B and C are nearly perpendicular to each other [dihedral angle $88.39(7)^{\circ}$]. The phenyl ring at C 9 is equatorially attached to the rings B and C and with them it makes dihedral angles of 70.52 (8) and $19.04(8)^{\circ}$, respectively. The methyl group at C 1 is pseudoequatorially disposed [C18-C1-C16-C11-148.1 (1) ${ }^{\circ}$ and $\left.\mathrm{C} 18-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7152.9(1)^{\circ}\right]$. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving rings A and D are observed [C18$\mathrm{H} 181 \cdots C g A(x,-1+y, z)$, with $\mathrm{H} \cdots C g 2.70, \mathrm{C} 18 \cdots C g$ $3.612(2) \AA$ and $X-\mathrm{H} \cdots C g \quad 158^{\circ} ; \quad \mathrm{C} 18-\mathrm{H} 182 \cdots C g D(x$, $-1+y, z$), with $\mathrm{H} \cdots C g 2.74, X \cdots C g 3.666$ (2) \AA and $X-$ $\mathrm{H} \cdots C g 161^{\circ} \mathrm{J}$.

Experimental

4-Methylphenol (0.05 mol) and benzoylacetone (0.05 mol) were mixed throughly. 80% sulfuric acid (15 ml) was added gradually with constant stirring. The reaction mixture was cooled in an ice-bath during the addition. It was kept overnight at room temperature and then poured over crushed ice with constant stirring. The resulting solid was filtered, washed with water and then with a dilute sodium

Received 2 January 2001 Accepted 30 January 2001 Online 13 February 2001
hydroxide solution followed by water to remove unreacted substances. It was dried and crystallized from ethanol as colourless single crystals (yield 60%; m.p. 333 K).

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2}$
$M_{r}=342.42$
Monoclinic, $P 2_{1} / c$
$a=17.7903$ (15) \AA
$b=5.5559$ (5) A
$c=18.0320(17) \AA$
$\beta=94.815$ (8$)^{\circ}$
$V=1776.0(3) \AA^{3}$
$Z=4$
Data collection
Enraf-Nonius CAD-4 diffract-
\quad ometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968
$\quad T_{\min }=0.982, T_{\max }=0.994$
3351 measured reflections
3240 independent reflections
2918 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.134$
$S=1.13$
3219 reflections
242 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.020 \\
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 21 \\
& k=0 \rightarrow 6 \\
& l=-21 \rightarrow 21 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: negligible }
\end{aligned}
$$

$D_{x}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2-25^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, white
$0.20 \times 0.15 \times 0.12 \mathrm{~mm}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0702 P)^{2}\right. \\
& +0.5073 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.22 \mathrm{e}^{\circ} \mathrm{\circ}^{-3} \\
& \Delta \rho_{\text {min }}=-0.25 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.019 \text { (1) }
\end{aligned}
$$

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

LV thanks the UGC, India, for the award of Minor Research Project during the period 1997-99. One of the authors (LV) thanks Dr Babu Varghese, RSIC, Indian Institute of Technology, Chennai, for his assistance in data collection.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

